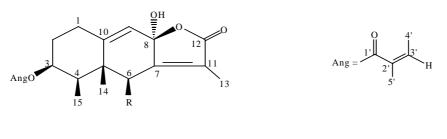
Two New Eremophilane Sesquiterpenes from Cacalia ainsliaeflora

Man Jun MAO, Zhong Jian JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000


Abstract: Two new eremophilane sesquiterpenes 3β -angeloyloxy- 8α -hydroxy- 6β -methoxy eremophil-7 (11), 9 (10)-dien-8, 12-olide (1) and 3β -angeloyloxy- 6β , 8α -dihydroxy-eremophi-7 (11), 9 (10)-dien-8, 12-olide (2) were isolated from *Cacalia ainsliaeflora*. Their structures were established by spectroscopic methods and 2D NMR experiments.

Keywords: Cacalia ainsliaeflora, Compositae, eremophilane sesquiterpene.

The root of *C. ainsliaeflora* has been used for curing pellagra, rheumatismal edema and insecticide¹. In this paper, we report the structure elucidation of two new eremophilane sesquiterpenes (1, 2) from the roots of *C. ainsliaeflora*.

Compound 1, colorless gum, $[\alpha]_{D}^{20}$: -50 (c 0.50, CHCl₃). HRESI-MS showed $[M+H]^+$ at m/z 377.19528 (calcd for $C_{21}H_{29}O_6$ 377.19587), corresponding to a molecular formula $C_{21}H_{28}O_6$. Its IR bands (1655, 1717, 1750cm⁻¹) and UV absorptions (221 nm) displayed the typical of unsaturated γ -lactones. In the ¹H-NMR spectra data,

Figure 1. Structures of compounds 1-2

1 R=OCH₃

2 R=OH

there are three methyl groups, an angeloyl group and a methoxyl group (**Table1**). Except for the -OAng and a -OCH₃, the ¹³C-NMR spectra of **1** showed 15 signals for 6×C, 4×CH, 2×CH₂, and 3×CH₃. Therefore, compound **1** was confirmed as eremophilane sesquiterpene². In the HMBC spectrum of **1**, the correlation of H-3 with C_{1'} (δ 167.5) and the methoxy protons with C-6 pointed to the -OAng at C-3 and -OCH₃ at C-6, respectively. Thus, the –OH should be located at C-8 (δ 101.6). In the biogenetic consideration of an eremophilane-type, the methyls at C-4 and C-5 are generally β -configurated. So the NOESY cross-peak between H-6 and H-4 α , H-3 and H-4 α

Man Jun MAO et al.

showed that the $-OCH_3$ at C-6 was in β -orientation and the -OAng at C-3 was in β -orientation, respectively. Configuration of the 8α -OH was suggested by the presence of a homoallylic spin-coupling (J=1.24) between H-6 α and H-13³. Thus, the structure of **1** was determined.

Compound **2**, colorless gum, $[\alpha]_{D}^{20}$: -7 (c 0.71, CHCl₃). The molecular formula, C₂₀H₂₆O₆ was deduced from its MS (molecular ion at *m/z* 362) and NMR spectra. Its spectral data were very similar to those of **1** except for the presence of a –OH at C-6 in **2** instead of the -OCH₃ in **1**. Thus, the structure of compound **2** was confirmed.

Table 1 ¹H-NMR (400MHz), ¹³C-NMR (100MHz) and DEPT data of 1-2 (CD₃COCD₃)

Н	1 δ _H	$2 \delta_{\rm H}$		С	1*бс	DEPT	2 *δc	DEPT
1	2.48dddd	2.51dddd		1	27.7	CH ₂	28.0	CH ₂
2	1.65ddt	1.65ddt		2	31.9	CH_2	31.9	CH_2
3	5.03ddd (J=3.2, 3.0, 4.5)	5.03ddd (J=3.2, 3.0)		3	74.8	CH	74.9	CH
4	1.80m	1.85m		4	46.6	CH	46.4	CH
6	4.25(q, J=1.24)	4.83(q, J=1.21)		5	50.9	С	51.0	С
9	5.73 (d, J=1.34)	5.71(d, J=1.33)		6	86.8	CH	76.6	CH
13	1.92 (d, J=1.24)	1.95(d, J=1.21)		7	157.4	С	160.0	С
14	1.14 (s)	1.19(s)		8	101.6	С	101.4	С
15	1.15 (d, J= 6.4)	1.25(d, J=7.0)		9	120.8	CH	120.5	CH
3'	6.09 (qq J=7.68, 1.40)	6.10(qq	J=7.21,	10	149.7	С	150.2	С
4'	1.96 (dq J=7.60, 1.34)	1.99(dq	J=7.21,	11	123.0	С	123.1	С
5'	1.89 (dq J=1.40, 1.34)	1.93(dq	J=1.50,	12	171.6	С	172.0	С
				13	8.3	CH_3	8.6	CH ₃
				14	14.8	CH_3	14.8	CH ₃
				15	15.1	CH_3	15.1	CH ₃
0	3.42 s			0	57.7			

* OAng: δ_{C} 167.5 (C₁', s), 128.8 (C₂', s), 138.5 (C₃', d), 20.99 (C₄', q), and 15.7 (C₅', q).

Acknowledgments

This work was supported by the National Natural Science Foundation of China No.29972017 and the Foundation of the Ministry of Education of China for Doctoral Program No. 98073003

References

- 1. Jiangsu college of New Medicine: "A Dictionary of the Traditional Chinese Medicines". Shanghai Science and Tchnology press, Shanghai, **1997**, p.22.
- 2. S. M. Zhang, G. L. Zhao, R. Li, G. Q. Lin. Phytochemistry, 1998, 8,519.
- 3. K. Naya, R. Kanazawa, M. Sawada. Bull. Chem. Soc. Jpn 1975, 48, 3220.

Received 5 January, 2001